

几丁质酶试剂盒说明书

(货号: BP10300W 微板法 48样 有效期: 3个月)

一、指标介绍:

多种微生物、动物、植物等都可产生几丁质酶,高等植物本身不存在作为真菌细胞壁组分之一的几丁质,但当植物受到病原菌感染时,几丁质酶活性迅速提高。因此该酶与植物对病原微生物的抗性有关,是重要的病程相关蛋白。

几丁质酶主要水解几丁质多聚体中β-1,4-糖苷键,在蜗牛酶的作用下全部水解为 N-乙酰氨基葡萄糖单体,进一步与铁氰化钾反应,于 420nm 处检测,进而计算得到几丁质酶活性大小。

二、试剂盒组分与配制:

试剂组分	试剂规格	存放温度	注意事项
提取液	液体 60mL×1 瓶	4℃避光保存	
试剂一	液体 15mL×1 瓶	4℃避光保存	
试剂二	粉体1瓶	4℃避光保存	1. 开盖前注意使粉体落入底部(可手动甩一甩); 2. 加入 5mL 盐酸充分混匀溶解后; 3. 再加 5.5mL 蒸馏水混匀备用; 4. 保存周期与试剂盒有效期相同。
试剂三	粉体 1 支	4℃保存	1. 开盖前注意使粉体落入底部(可手动用一用); 2. 加入 1.2mL 蒸馏水溶解备用; 3. 保存周期与试剂盒有效期相同。
试剂四	液体 2mL×1 支	4℃保存	
试剂五	液体 5mL×1 瓶	4℃避光保存	
试剂六	粉体1瓶	4℃保存	1. 开盖前注意使粉体落入底部(可手动用一用); 2. 加入24mL蒸馏水溶解备用; 3. 保存周期与试剂盒有效期相同。
标准品	粉剂1支	4℃避光保存	1. 若重新做标曲,则用到该试剂; 2. 按照说明书中标曲制作步骤进行 配制; 3. 溶解后的标品一周内用完。

三、实验器材:

研钵(匀浆机)、冰盒(制冰机)、台式离心机、可调式移液枪、水浴锅(烘箱、培养箱、金属浴)、 96 孔板、离心管、酶标仪、**盐酸、**蒸馏水(去离子水、超纯水均可)。

四、指标测定:

建议先选取 1-3 个差异大的样本(例如不同类型或分组)进行预实验,熟悉操作流程,根据预实验结果确定或调整样本浓度,以防造成样本或试剂不必要的浪费!

1、样本提取:

- ① 组织样本: 称取约 0.1g 组织, 加入 1mL 提取液, 进行冰浴匀浆, 于 4℃, 12000rpm 离心 10min, 取上清置冰上待测。
- ② 真菌样本: 先收集细胞到离心管内, 离心后弃上清; 取 500 万细胞加入 1mL 提取液; 冰浴超声波破碎细胞 (功率 300w, 超声 3 秒, 间隔 7 秒, 总时间 3min); 于 4℃, 12000rpm 离心 10min, 取上清置于冰上待测。
 - 【注】: 若增加样本量,可按照提取液(mL):细细胞数量(104)为 1:500~1000的比例进行提取。

网址: www.bpelisa.com

③ 液体样本:直接检测;若浑浊,离心后取上清检测。

2、检测步骤:

① 酶标仪预热 30min 以上, 调节波长至 420nm。在 EP 管中依次加入:

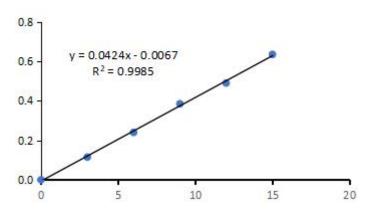
试剂组分 (μL)	测定管	对照管	
样本	80		
煮沸样本		80	
试剂一	80	80	
试剂二	100	100	
混匀, 37℃ (恒温培养箱) 孵育 1.5h, 4000rpm 离心 5min, 取上清			

③ 在 EP 管中依次加入:

H 1 1/2/3/3/3/4				
上清液	150	150		
试剂三	10	10		
试剂四	15	15		
混匀, 37℃孵育 1h				
试剂五	50	50		
混匀,4000rpm 离心 5min,取上清液待测,				

④ 在 EP 管中依次加入:

上清液	150	150
试剂六	200	200
混匀, 95-100℃煮沸 1	0min,取 200μL 至 96 孑	L板中于 420nm 处读取


各管吸光值 A, $\Delta A = A$ 对照-A 测定(每个样本做一个自身对照)。

【注】1. 煮沸的样本: 取出部分上清液于 95-100℃煮沸 10min, 使样本里面的酶失去活性。

2. 若 ΔA 较小,可以加大样本量(如增至 $120\mu L$,则试剂一相应减少),或增加样本取样量(如增至 0.2g),则改变后的 V1 和样本质量 W 需代入公式重新计算。

五、结果计算:

1、标准曲线方程: y = 0.0424x - 0.0067,X 是标准品质量(μg), $y \in \Delta A$ 。

2、按照样本重量计算:

定义: 每克组织每小时分解几丁质产生 $1\mu gN$ -乙酰氨基葡萄糖的酶量为一个单位。 几丁质酶活($\mu g/h/g$ 鲜重)=[($\Delta A+0.0067$)÷ 0.0424×2.6]÷($V1\div V\times W$)÷T=511×($\Delta A+0.0067$)÷W 3、按照蛋白质浓度计算:

定义: 每毫克蛋白每小时分解几丁质产生 $1\mu gN$ -乙酰氨基葡萄糖的酶量为一个单位。 几丁质酶活($\mu g/h/mg$ prot)=[($\Delta A+0.0067$)÷ 0.0424×2.6]÷($V1\times Cpr$)÷ $T=511\times(\Delta A+0.0067$)÷Cpr4、按细胞数量计算:

定义:每10⁴个细胞每小时分解几丁质产生1µgN-乙酰氨基葡萄糖的酶量为一个单位。

网址: www.bpelisa.com

几丁质酶活(μ g/h/ 10^4 cell)=[(Δ A+0.0067)÷0.0424×2.6]÷(V1÷V×细胞数量)÷T =511×(Δ A+0.0067)÷细胞数量

5、按照液体体积计算:

定义: 每毫升液体每小时分解几丁质产生 1µgN-乙酰氨基葡萄糖的酶量为一个单位。

几丁质酶活(μ g/h/mL)=[(Δ A+0.0067)÷0.0424×2.6]÷V1÷T=511×(Δ A+0.0067)

V---提取液体积, 1mL; V1---样本体积, 0.08mL; T---反应时间, 1.5h; W---样本质量, g; 2.6---体积系数; 标准品分子量---221.21; Cpr---样本蛋白浓度, mg/mL, 建议使用本公司的 BCA 蛋白含量检测试剂盒。

附:标准曲线制作过程:

1 标准品临用前加 2mL 蒸馏水,标准品母液浓度为 1mg/mL。将母液用蒸馏水稀释成六个浓度梯度的标准品,例如: 0,0.02,0.04,0.06,0.08,0.1mg/mL。也可根据实际样本调整标准品浓度。

2 标品稀释参照表如下:

	Depart 1 2 m 200 1					
吸取物	吸取标准品母液 100uL,加入 900uL 蒸馏水,混匀得到 0.1mg/mL 的标品稀释液待用。					
标品浓度	0	0.02	0.04	0.06	0.08	0.1
mg/mL	0	0.02	0.04	0.00	0.08	0.1
标品稀释液	0	40	80	120	160	200
uL	U	40	80	120	100	200
水 uL	200	160	120	80	40	0
各标准管混匀待用。						

3 依据加样表操作,根据结果,以各浓度吸光值减去0浓度吸光值,过0点制作标准曲线。

试剂名称 (μL)	标准管	0 浓度管(仅做一次)
标品	150	
蒸馏水		150
试剂六	200	200

混匀, 95-100℃煮沸 10min, 取 200μL 至 96 孔板中于 420nm 处 读取各管吸光值 A, △A=A 测定-0 浓度管。

网址: www.bpelisa.com